Epidemic Spreading in Non-Markovian Time-Varying Networks
نویسندگان
چکیده
Most real networks are characterized by connectivity patterns that evolve in time following complex, non-Markovian, dynamics. Here we investigate the impact of this ubiquitous feature by studying the Susceptible-Infected-Recovered (SIR) and Susceptible-Infected-Susceptible (SIS) epidemic models on activity driven networks with and without memory (i.e., Markovian and non-Markovian). We show that while memory inhibits the spreading process in SIR models, where the epidemic threshold is moved to larger values, it plays the opposite effect in the case of the SIS, where the threshold is lowered. The heterogeneity in tie strengths, and the frequent repetition of connections that it entails, allows in fact less virulent SIS-like diseases to survive in tightly connected local clusters that serve as reservoir for the virus. We validate this picture by evaluating the threshold of both processes in a real temporal network. Our findings confirm the important role played by non-Markovian network dynamics on dynamical processes.
منابع مشابه
Synchronization criteria for T-S fuzzy singular complex dynamical networks with Markovian jumping parameters and mixed time-varying delays using pinning control
In this paper, we are discuss about the issue of synchronization for singular complex dynamical networks with Markovian jumping parameters and additive time-varying delays through pinning control by Takagi-Sugeno (T-S) fuzzy theory.The complex dynamical systems consist of m nodes and the systems switch from one mode to another, a Markovian chain with glorious transition probabili...
متن کاملCooperative Epidemic Spreading in Complex Networks
Most epidemic spreading models assume memoryless systems and statistically independent infections. Nevertheless, many real-life cases are manifestly time-sensitive and may be strongly correlated. We study the effect of non-Markovian stochastic dynamics on the SIS model, in random and scale-free networks, and propose a novel microscopic description to account for cooperation. Initial exploratory...
متن کاملTemporal Gillespie Algorithm: Fast Simulation of Contagion Processes on Time-Varying Networks
Stochastic simulations are one of the cornerstones of the analysis of dynamical processes on complex networks, and are often the only accessible way to explore their behavior. The development of fast algorithms is paramount to allow large-scale simulations. The Gillespie algorithm can be used for fast simulation of stochastic processes, and variants of it have been applied to simulate dynamical...
متن کاملHuman mobility and time spent at destination: impact on spatial epidemic spreading.
Host mobility plays a fundamental role in the spatial spread of infectious diseases. Previous theoretical works based on the integration of network theory into the metapopulation framework have shown that the heterogeneities that characterize real mobility networks favor the propagation of epidemics. Nevertheless, the studies conducted so far assumed the mobility process to be either Markovian ...
متن کاملEpidemic Spreading on Activity-Driven Networks with Attractiveness
We study SIS epidemic spreading processes unfolding on a recent generalization of the activity-driven modeling framework. In this model of time-varying networks, each node is described by two variables: activity and attractiveness. The first describes the propensity to form connections, while the second defines the propensity to attract them. We derive analytically the epidemic threshold consid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1404.1006 شماره
صفحات -
تاریخ انتشار 2014